Bài viết mới nhất


Tableau – “Vũ Khí Trực Quan Hóa” Cho Data Analyst 2025

Trong thời đại data-driven, mọi quyết định kinh doanh đều cần dựa trên số liệu. Nhưng số liệu thô thường khô khan, khó đọc, và khó truyền đạt cho những người không chuyên về dữ liệu. Đây chính là lúc Tableau bước vào cuộc chơi: một công cụ trực quan hóa mạnh mẽ, giúp Data Analyst biến dữ liệu thành insight rõ ràng, dễ hiểu, và mang tính thuyết phục. 💡 Nếu coi dữ liệu là “ngôn ngữ”, thì Tableau chính là “nghệ thuật kể chuyện” của Data Analyst. Bài viết này sẽ hướng dẫn toàn diện cách tận dụng Tableau để nâng hiệu suất phân tích, tăng khả năng thuyết phục, và giúp bạn trở thành “người dẫn dắt quyết định” thay vì chỉ là “người chạy số”.

Created by: tieplv | Date: 27/09/2025 | 303

Xem thêm
Looker Studio – Giải Pháp Báo Cáo Marketing Miễn Phí & Nhanh Gọn

Nếu bạn đang làm Marketing hoặc Performance Ads, chắc chắn từng đau đầu vì phải tải dữ liệu Facebook Ads, Google Ads về Excel mỗi tuần để làm báo cáo. 💡 Looker Studio (trước đây là Google Data Studio) là giải pháp miễn phí giúp bạn kết nối trực tiếp với các nguồn quảng cáo và tạo dashboard tự động.

Created by: tieplv | Date: 27/09/2025 | 310

Xem thêm
📊 Công Cụ Hỗ trợ Phân Tích Dữ Liệu Cho Data Engineer và Data Analyst: Tableau, Power BI & Looker

Trong kỷ nguyên dữ liệu hiện đại, Data Engineer không chỉ xây dựng pipeline mà còn cần hiểu cách dữ liệu được khai thác ở tầng phân tích (Analytics Layer). Điều này giúp bạn thiết kế Data Warehouse tối ưu, hỗ trợ các nhà phân tích (Data Analyst, Business Analyst) và giúp doanh nghiệp ra quyết định nhanh chóng. Bài viết này sẽ phân tích ba công cụ phân tích dữ liệu phổ biến nhất: Tableau, Power BI và Looker – từ góc nhìn của một Data Engineer.

Created by: tieplv | Date: 27/09/2025 | 302

Xem thêm
Business Acumen – Vũ Khí Bí Mật Giúp Data Analyst Được Mời Vào Bàn Quyết Định

Bạn có thể viết SQL nhanh, làm dashboard đẹp – nhưng sếp vẫn chưa xem bạn như “cố vấn chiến lược”? 💡 Nguyên nhân: Thiếu Business Acumen – khả năng hiểu và nói ngôn ngữ kinh doanh. Đây là kỹ năng giúp bạn không chỉ trả lời “số là bao nhiêu?” mà còn giải thích “vì sao số quan trọng”. Kỹ năng này không chỉ giúp bạn giao tiếp hiệu quả với các bộ phận khác, mà còn là chìa khóa để bạn được mời vào bàn quyết định, trở thành một phần quan trọng trong chiến lược của công ty.

Created by: tieplv | Date: 25/09/2025 | 304

Xem thêm
🔧 Công Cụ Quản Lý Data Pipeline: Airflow vs Prefect vs Dagster

Trong thời đại dữ liệu hiện đại, việc xây dựng pipeline không chỉ dừng lại ở viết script ETL/ELT – bạn cần một công cụ orchestration để quản lý luồng dữ liệu, lịch chạy, xử lý lỗi và theo dõi trạng thái. Ba công cụ phổ biến nhất hiện nay là Apache Airflow, Prefect, và Dagster. Hãy cùng phân tích sự khác biệt.

Created by: tieplv | Date: 25/09/2025 | 306

Xem thêm
Đàm Phán & Thuyết Phục Bằng Dữ Liệu – Đưa Insight Thành Quyết Định

Bạn có từng đưa insight rất hay, nhưng sếp bảo: “Ừ, để xem đã.” …và sau đó chẳng ai làm gì theo đề xuất của bạn? 💡 Đó là lúc bạn cần kỹ năng đàm phán & thuyết phục bằng dữ liệu. Đây là bước biến bạn từ “người phân tích” thành “người ảnh hưởng chiến lược”.

Created by: tieplv | Date: 25/09/2025 | 303

Xem thêm
Data Modeling Chuẩn Star Schema – Bí Quyết Dashboard Chạy Nhanh, Số Liệu Chính Xác

Bạn có bao giờ gặp cảnh dashboard chạy cực chậm, số liệu double count hoặc DAX trả kết quả sai? 💡 Phần lớn nguyên nhân nằm ở data model. Hãy cùng tìm hiểu Star Schema – mô hình dữ liệu chuẩn giúp bạn giải quyết các vấn đề này.

Created by: tieplv | Date: 24/09/2025 | 313

Xem thêm
10 SQL Pattern Quan Trọng Cho Data Analyst – Phải Thuộc Lòng

SQL là “vũ khí số 1” của mọi Data Analyst. Nhưng không phải ai cũng biết cách dùng SQL hiệu quả – nhiều bạn chỉ dừng ở SELECT, WHERE đơn giản. 💡 Đây là 10 SQL pattern (mẫu câu truy vấn) phổ biến nhất trong công việc Data Analyst, kèm ví dụ thực tế để bạn có thể copy–paste và áp dụng ngay.

Created by: tieplv | Date: 24/09/2025 | 312

Xem thêm

Thư viện ảnh


...
...
...
...

Chương trình đào tạo của MCI


...

Phân tích dữ liệu

Phân tích dữ liệu (Data Analytics), là sự lựa chọn cho những ai đam mê thu thập, khai thác và xử lý các bộ dữ liệu để đưa ra quan sát. Phân tích dữ liệu giúp tìm ra các xu hướng và số liệu trong các khối thông tin mà có thể bị bỏ sót nếu không sử dụng kĩ thuật hay công cụ phân tích. Giúp tối ưu hóa các quy trình làm tăng hiệu quả tổng thể của một doanh nghiệp, hệ thống.

Xem thêm
...

Khoa học dữ liệu

Khoa học dữ liệu (Data Science) là lĩnh vực nghiên cứu kết hợp chuyên môn lập trình và kiến thức toán học, thống kê để xử lý khối lượng dữ liệu. Áp dụng các thuật toán học máy cho các con số, văn bản, hình ảnh, video, âm thanh, sau đó xây dựng các hệ thống trí tuệ nhân tạo (AI) để phân tích dữ liệu từ nhiều nguồn khác nhau để đưa quyết định, lập kế hoạch chiến lược cho doanh nghiệp.

Xem thêm
...

Kỹ sư dữ liệu

Kỹ sư dữ liệu (Data Engineer), là một trong những vị trí quan trọng trong lĩnh vực khoa học dữ liệu, người nắm vị trí then chốt xây dựng, kiểm tra, duy trì các cấu trúc Data tổng hợp. Tất cả các số liệu sẽ được số hóa, giúp tiết kiệm thời gian và giảm thiểu chi phí cho doanh nghiệp. Họ là những người thiết kế và tối ưu các hệ thống dữ liệu lớn để mang lại những lợi thế cạnh trạnh vượt trội.

Xem thêm
...

Lập trình ứng dụng

Lập trình ứng dụng, top ngành được săn đón nhất hiện nay. Sử dụng các ngôn ngữ lập trình để tạo ra các ứng dụng có thể hoạt động được trên nền tảng, hoặc thiết bị như: ứng dụng web, ứng dụng di động,..Thế giới sẽ thiếu đi sự tương tác và dễ dàng nếu thiếu đi những kỹ sư phần mềm làm việc không biết mệt mỏi. Đây là ngành nghề trong mọi ngành nghề của thế kỉ 21 và hơn thế nữa.

Xem thêm