Lịch học dự kiến diễn ra



Lớp: PYTHON 73SA2 LEVEL 1
Địa điểm: 13 Cao Thắng, Quận 3, TP.HCM
Thời gian học: Thứ 3 - 19H00 - 21H30 & Thứ 7 - 19H00 - 21H30
Lịch khai giảng: Feb. 11, 2023
Thời gian kết thúc: March 14, 2023
Giảng viên dự kiến: Trần Tâm
Lớp: PYTHON 73SB2 LEVEL 1
Địa điểm: 13 Cao Thắng, Quận 3, TP.HCM
Thời gian học: Thứ 2 - 19H00 - 21H30 & Thứ 6 - 19H00 - 21H30
Lịch khai giảng: Feb. 27, 2023
Thời gian kết thúc: March 31, 2023
Giảng viên dự kiến: --------
Lớp: PYTHON 65A2 LEVEL 1
Địa điểm: Số 5, Ngách 23, Ngõ 165 Thái Hà, HN
Thời gian học: Thứ 2 - 19H00 - 21H30 & Thứ 6 - 19H00 - 21H30
Lịch khai giảng: Feb. 6, 2023
Thời gian kết thúc: March 10, 2023
Giảng viên dự kiến: Nguyễn Kim Quang
Lớp: PYTHON 65B2 LEVEL 1
Địa điểm: Số 5, Ngách 23, Ngõ 165 Thái Hà, HN
Thời gian học: Thứ 4 - 19H00 - 21H30 & Thứ 7 - 14H00 - 17H00
Lịch khai giảng: Feb. 22, 2023
Thời gian kết thúc: March 25, 2023
Giảng viên dự kiến: Đỗ Đình Hưng
Python Level 1

Python Foundation in Data Analytics

Đây là 1 khóa học Python từ cơ bản đến nâng cao, ứng dụng trong phân tích dữ liệu lớn (Big Data Analyst) và quản trị rủi ro kinh doanh. Hình thức đào tạo online và offline trong thời lượng 10 buổi học, mỗi buổi học từ 2.5 - 3 tiếng. Học trực tiếp cùng các chuyên gia thông tin như sau:

Tên khóa học: Python Foundation in Data Analytics (Python Level 1)

Cơ hội nghề nghiệp nổi bật sau khi tốt nghiệp khóa học này là các vị trí:
• Data Analyst (Chuyên viên Phân tích Dữ liệu)
• Machine Learning (ML) Engineer (Kĩ sư Học máy)
• Artificial Intelligence (AI) Engineer (Kĩ sư Trí tuệ Nhân tạo)
• Data Scientist (Nhà Khoa học Dữ liệu)

5.0 (999)

Đối tượng

• Sinh viên khối kinh tế, kĩ thuật có định hướng tham gia ngành Data Science, Data Analytics đang bắt đầu tìm hiểu các kiến thức liên quan Python, Machine Learning, Deep Learning và học cách ứng dụng Python vào các dự án thực tế tại doanh nghiệp.

• Người đã đi làm mong muốn cải thiện kỹ năng làm việc với dữ liệu, kỹ năng giải quyết và ra quyết định với các bài toán thực tế trong công việc dựa trên phân tích dữ liệu chuyên sâu và hiệu quả với Python.

• Các bạn có mong muốn chuyển ngang sang ngành Data Analysis, Data Science & Machine Learning để có mức thu nhập cao hơn lên tới 1000$/tháng và phát triển sự nghiệp rộng mở hơn.

Yêu cầu đầu vào

Không yêu cầu đầu vào

Bạn sẽ học những gì

• Nắm về Python và Python IDE (mục đích, chức năng, operators, các libraries thông dụng)
• Vẽ biểu đồ và trực quan hóa dữ liệu
• Cách sử dụng thư viện Numpy Basics, Pandas
• Nắm về Built-in Data Structures, Functions, and Files
• Biết cách ghép nối dữ liệu, phân tích theo nhóm Data Aggregation and Group Operations
• Xử lý dữ liệu dạng Time Series
• Ngoài ra có thể loading dữ liệu lớn, lưu trữ, file formats, làm sạch và chuẩn hóa dữ liệu
• Thành thạo Python sau 10 buổi học
• Biết Cách sử dụng các library nâng cao khác.

Nội dung khóa học

    Chủ đề:

    - Preliminaries
    - Python Language Basics, Ipython, and Jupiter NoteBooks
    - Built-in Data Structures, Functions, and Files

    Mục tiêu:

    - Làm quen với Python
    - Nắm vững cấu trúc dữ liệu, hàm, và files

    Ứng dụng:

    Phân tích dữ liệu lớn (Big Data)

    Case Study:

    Chủ đề:

    - Numpy Basics: Arrays and Vectorized Computation
    - Getting Started with Pandas

    Mục tiêu:

    - Sử dụng thư viện Numpy, cấu trúc mảng, vector
    - Xử lý dữ liệu lớn bằng Pandas

    Ứng dụng:

    Phân tích dữ liệu lớn (Big Data)

    Case Study:

    Chủ đề:

    - Data Loading, Storage, and File Formats
    - Data Cleaning and Preparation

    Mục tiêu:

    - Đọc, lưu trữ và xử lý dữ liệu
    - Làm sạch dữ liệu

    Ứng dụng:

    Phân tích dữ liệu lớn (Big Data)

    Case Study:

    Chủ đề:

    - Data Wrangling: Join, Combine, and Reshape
    - Ploting and Visualization
    - Data Aggregation and Group Operations

    Mục tiêu:

    - Sắp xếp và cấu trúc lại dữ liệu
    - Vẽ biểu đồ và trực quan hóa
    - Tập hợp dữ liệu và thao tác trên nhóm

    Ứng dụng:

    Phân tích dữ liệu lớn (Big Data)

    Case Study:

    Chủ đề:

    - Time Series

    Mục tiêu:

    - Nắm vững kiến thức về dữ liệu theo thời gian
    - Mở rộng kiến thức với pandas nâng cao

    Ứng dụng:

    Khoa học dữ liệu

    Case Study:

    Chủ đề:

    - Advanced pandas

    Mục tiêu:

    - Nắm vững kiến thức về dữ liệu theo thời gian
    - Mở rộng kiến thức với pandas nâng cao

    Ứng dụng:

    Khoa học dữ liệu

    Case Study:

    Chủ đề:

    - Introduction to Modelling Libraries in Python
    - Data Analysis Examples

    Mục tiêu:

    - Kiến thức thực hành từ chuyên gia khoa học dữ liệu

    Ứng dụng:

    Khoa học dữ liệu

    Case Study:

    Chủ đề:

    - Machine learning

    Mục tiêu:

    - Kiến thức về Máy học
    - Học có giám sát với thư viện scikit-learn
    - Học không giám sát trong Python

    - Hướng dẫn Project cuối khóa

    Ứng dụng:

    Machine learning

    Case Study:

    Credit risk scoring and Segmenation in banking

    Chủ đề:

    - Machine learning

    Mục tiêu:

    - Kiến thức về Máy học
    - Học có giám sát với thư viện scikit-learn
    - Học không giám sát trong Python

    Ứng dụng:

    Machine learning

    Case Study:

    Credit risk scoring and Segmentation in banking

    Chủ đề:

    - Tổng kết cuối khoá

    Mục tiêu:

    - Trình bày Project cuối khóa và chữa bài
    - Tổng kết kiến thức khóa học python

    Ứng dụng:

    Tổng kết cuối khoá

    Case Study:

Tại sao khóa học tại MCI phù hợp với bạn

1. Lộ trình khóa học thiết kế khoa học, theo quy trình làm việc thực tế giúp bạn tiếp thu và nắm chắc kiến thức theo trình tự khoa học
2. Giáo trình đào tạo theo chuẩn Quốc tế kết hợp giữa lý thuyết và thực hành qua các case study thực tế
3. 100% Giảng viên tại MCI là các chuyên gia tư vấn tại Big4 các tập đoàn lớn tại Việt Nam, có chứng chỉ đào tạo nghiên cứu quốc tế trong lĩnh vực lập trình và dữ liệu
4. Giảng viên hướng dẫn tận tay giúp bạn thành thạo Python trong thời gian ngắn nhất
5. Cam kết chất lượng đào tạo, miễn phí học lại trọn đời nếu chưa nắm rõ kiến thức

Đội ngũ giảng viên


Trần Thị Hồng Hạnh

- Học tiến sĩ Machine Learning & Data Science tại trường La Rochelle University, Pháp and Jozef Stefan Institute, Slovenia
- Nghiên cứu sinh tại Josef Stefan Institute, Slovenia
- Từng đảm nhận vị trí Data Scientist tại 3T JSC, Việt Nam
- Từng đảm nhận vị trí Data Scientist tại Samsung SDSV, Việt Nam


Nguyễn Tiến Đình

- Hơn 8 năm kinh nghiệm trong ngành công nghệ thông tin và khoa học dữ liệu tại Việt Nam
- Kĩ sư phần mềm (Server ARM) tại Công ty Ampere Computing, Việt Nam
- Kĩ sữ phần mềm (CBA - Component Based Architecture) tại Công ty DEK Technology, Việt Nam
- Hướng dẫn và hỗ trợ về Công nghệ thông tin tại cuộc thi ô tô IT Car Racing, sử dụng Keras, Tensoflow và xử lý ảnh Pillow


Đỗ Văn Hiếu

- Đã có 8 năm kinh nghiệm trong Phân tích dữ liệu tại Prudential, VNG, Zalo...
- Đảm nhận vị trí chuyên viên phân tích dữ liệu cao cấp tại Công ty Prudential Việt Nam
- Trưởng nhóm Phân tích dữ liệu tại Tập đoàn VNG Việt Nam
- Trưởng nhóm Phân tích kinh doanh tại Công ty Zalo Việt Nam
- Cuộc thi/Dự án trên Kaggle:
1. Phân tích và dự đoán giá nhà ở - House Prices - Advanced Regression Techniques
2. Thị giác máy tính - Nhận diện và phân biệt chữ số viết tay - Computer vision - Digit numbers classification (MNIST Dataset)


Nguyễn Thành Đạt

- 5 năm kinh nghiệm trong lĩnh vực Công nghệ thông tin và Khoa học dữ liệu
- Chuyên viên Phân tích dữ liệu tại Công ty Arbory Afloat, Singapore
- Chuyên viên lập trình và phân tích dữ liệu tại trường Đại học Công nghệ và Thiết kế Singapore - Singapore University of Technology and Design
- Tốt nghiệp đại học ngành Kĩ sư hệ thống và thiết kế tại trường Singapore University of Technology and Design


Bùi Thế Anh

- 10 năm kinh nghiệm trong ngành Phân tích định lượng và Dữ liệu lớn tại Việt Nam
- Chuyên viên quản lý tối ưu kinh doanh cao cấp tại Tập đoàn One Mount Group
- Chuyên viên định lượng cao cấp tại Công ty Cổ phần Chứng khoán BIDV Việt Nam
- Chuyên viên Phân tích kinh doanh tại Tập đoàn Vingroup
- Tốt nghiệp Thạc sĩ tài chính tại Mỹ, trường University of Cincinnati, Carl H. Lindner College of Business, US