

Sự kiện của MCI
Bài viết mới nhất
📊 Công Cụ Hỗ trợ Phân Tích Dữ Liệu Cho Data Engineer và Data Analyst: Tableau, Power BI & Looker
Trong kỷ nguyên dữ liệu hiện đại, Data Engineer không chỉ xây dựng pipeline mà còn cần hiểu cách dữ liệu được khai thác ở tầng phân tích (Analytics Layer). Điều này giúp bạn thiết kế Data Warehouse tối ưu, hỗ trợ các nhà phân tích (Data Analyst, Business Analyst) và giúp doanh nghiệp ra quyết định nhanh chóng. Bài viết này sẽ phân tích ba công cụ phân tích dữ liệu phổ biến nhất: Tableau, Power BI và Looker – từ góc nhìn của một Data Engineer.
Created by: tieplv | Date: 27/09/2025 |
302 Xem thêmBusiness Acumen – Vũ Khí Bí Mật Giúp Data Analyst Được Mời Vào Bàn Quyết Định
Bạn có thể viết SQL nhanh, làm dashboard đẹp – nhưng sếp vẫn chưa xem bạn như “cố vấn chiến lược”? 💡 Nguyên nhân: Thiếu Business Acumen – khả năng hiểu và nói ngôn ngữ kinh doanh. Đây là kỹ năng giúp bạn không chỉ trả lời “số là bao nhiêu?” mà còn giải thích “vì sao số quan trọng”. Kỹ năng này không chỉ giúp bạn giao tiếp hiệu quả với các bộ phận khác, mà còn là chìa khóa để bạn được mời vào bàn quyết định, trở thành một phần quan trọng trong chiến lược của công ty.
Created by: tieplv | Date: 25/09/2025 |
302 Xem thêm🔧 Công Cụ Quản Lý Data Pipeline: Airflow vs Prefect vs Dagster
Trong thời đại dữ liệu hiện đại, việc xây dựng pipeline không chỉ dừng lại ở viết script ETL/ELT – bạn cần một công cụ orchestration để quản lý luồng dữ liệu, lịch chạy, xử lý lỗi và theo dõi trạng thái. Ba công cụ phổ biến nhất hiện nay là Apache Airflow, Prefect, và Dagster. Hãy cùng phân tích sự khác biệt.
Created by: tieplv | Date: 25/09/2025 |
305 Xem thêmĐàm Phán & Thuyết Phục Bằng Dữ Liệu – Đưa Insight Thành Quyết Định
Bạn có từng đưa insight rất hay, nhưng sếp bảo: “Ừ, để xem đã.” …và sau đó chẳng ai làm gì theo đề xuất của bạn? 💡 Đó là lúc bạn cần kỹ năng đàm phán & thuyết phục bằng dữ liệu. Đây là bước biến bạn từ “người phân tích” thành “người ảnh hưởng chiến lược”.
Created by: tieplv | Date: 25/09/2025 |
302 Xem thêmData Modeling Chuẩn Star Schema – Bí Quyết Dashboard Chạy Nhanh, Số Liệu Chính Xác
Bạn có bao giờ gặp cảnh dashboard chạy cực chậm, số liệu double count hoặc DAX trả kết quả sai? 💡 Phần lớn nguyên nhân nằm ở data model. Hãy cùng tìm hiểu Star Schema – mô hình dữ liệu chuẩn giúp bạn giải quyết các vấn đề này.
Created by: tieplv | Date: 24/09/2025 |
310 Xem thêm10 SQL Pattern Quan Trọng Cho Data Analyst – Phải Thuộc Lòng
SQL là “vũ khí số 1” của mọi Data Analyst. Nhưng không phải ai cũng biết cách dùng SQL hiệu quả – nhiều bạn chỉ dừng ở SELECT, WHERE đơn giản. 💡 Đây là 10 SQL pattern (mẫu câu truy vấn) phổ biến nhất trong công việc Data Analyst, kèm ví dụ thực tế để bạn có thể copy–paste và áp dụng ngay.
Created by: tieplv | Date: 24/09/2025 |
312 Xem thêm10 Thách Thức Thực Tế Khi Làm Data Analyst – Và Cách Vượt Qua
Nghe “Data Analyst” có vẻ sang chảnh: ngồi mát, xem dashboard đẹp, phân tích insight. Nhưng thực tế không ít người “vỡ mộng” khi đi làm: dữ liệu lộn xộn, yêu cầu thay đổi liên tục, báo cáo chạy sát giờ họp… 💡 Đây là 10 thách thức phổ biến nhất mà một Data Analyst gặp phải và giải pháp thực tế để bạn không bị choáng khi bước vào nghề.
Created by: tieplv | Date: 24/09/2025 |
305 Xem thêmData Analyst 2025 – Lương, Kỹ Năng & Cơ Hội Nghề Nghiệp
Bạn đang cân nhắc trở thành Data Analyst, hoặc đang làm nhưng muốn biết mình có đang được trả lương đúng mặt bằng? Hay bạn tò mò: “Năm 2025 rồi, Data Analyst còn hot không? Có bị AI thay thế chưa?” 💡 Đây chính là bức tranh toàn cảnh thị trường việc làm Data Analyst 2025 – từ lương, kỹ năng, đến cơ hội nghề nghiệp để bạn có thể quyết định đầu tư học tập và phát triển bản thân.
Created by: tieplv | Date: 24/09/2025 |
307 Xem thêmThư viện ảnh




Chương trình đào tạo của MCI

Phân tích dữ liệu
Phân tích dữ liệu (Data Analytics), là sự lựa chọn cho những ai đam mê thu thập, khai thác và xử lý các bộ dữ liệu để đưa ra quan sát. Phân tích dữ liệu giúp tìm ra các xu hướng và số liệu trong các khối thông tin mà có thể bị bỏ sót nếu không sử dụng kĩ thuật hay công cụ phân tích. Giúp tối ưu hóa các quy trình làm tăng hiệu quả tổng thể của một doanh nghiệp, hệ thống.
Xem thêm
Khoa học dữ liệu
Khoa học dữ liệu (Data Science) là lĩnh vực nghiên cứu kết hợp chuyên môn lập trình và kiến thức toán học, thống kê để xử lý khối lượng dữ liệu. Áp dụng các thuật toán học máy cho các con số, văn bản, hình ảnh, video, âm thanh, sau đó xây dựng các hệ thống trí tuệ nhân tạo (AI) để phân tích dữ liệu từ nhiều nguồn khác nhau để đưa quyết định, lập kế hoạch chiến lược cho doanh nghiệp.
Xem thêm
Kỹ sư dữ liệu
Kỹ sư dữ liệu (Data Engineer), là một trong những vị trí quan trọng trong lĩnh vực khoa học dữ liệu, người nắm vị trí then chốt xây dựng, kiểm tra, duy trì các cấu trúc Data tổng hợp. Tất cả các số liệu sẽ được số hóa, giúp tiết kiệm thời gian và giảm thiểu chi phí cho doanh nghiệp. Họ là những người thiết kế và tối ưu các hệ thống dữ liệu lớn để mang lại những lợi thế cạnh trạnh vượt trội.
Xem thêm
Lập trình ứng dụng
Lập trình ứng dụng, top ngành được săn đón nhất hiện nay. Sử dụng các ngôn ngữ lập trình để tạo ra các ứng dụng có thể hoạt động được trên nền tảng, hoặc thiết bị như: ứng dụng web, ứng dụng di động,..Thế giới sẽ thiếu đi sự tương tác và dễ dàng nếu thiếu đi những kỹ sư phần mềm làm việc không biết mệt mỏi. Đây là ngành nghề trong mọi ngành nghề của thế kỉ 21 và hơn thế nữa.
Xem thêm