Sự kiện của MCI
Bài viết mới nhất
🎨 Data Visualization – Khi con số biết kể chuyện
“Một biểu đồ tốt có thể thay thế hàng nghìn dòng báo cáo.” Visualization không chỉ là vẽ đẹp — mà là kể chuyện bằng dữ liệu.
Created by: tieplv | Date: 17/10/2025 | 309
Xem thêm📊 Data Quality – Khi dữ liệu “bẩn” phá hỏng mọi insight
“Garbage in, garbage out.” Dữ liệu sai → báo cáo sai → quyết định sai. Data Quality là nền móng sống còn trong mọi hệ thống dữ liệu hiện đại.
Created by: tieplv | Date: 17/10/2025 | 302
Xem thêm🧭 Data Literacy – Kỹ năng ngôn ngữ dữ liệu cho thời đại AI
“Không ai hỏi bạn có biết Excel hay không. Giờ họ hỏi: Bạn đọc hiểu dữ liệu được không?”
Created by: tieplv | Date: 17/10/2025 | 301
Xem thêm🔥 AI THEO NGÀNH – NÂNG TẦM SỰ NGHIỆP ĐÃ CHÍNH THỨC QUAY TRỞ LẠI!
Bạn đã sẵn sàng để đưa sự nghiệp của mình lên “level AI”? Không còn những buổi học lý thuyết nhàm chán – mà là 3 buổi thực chiến, cầm tay chỉ việc với chuyên gia hàng đầu tại MCI Academy!
Created by: tieplv | Date: 16/10/2025 | 303
Xem thêm🕸️ Data Mesh – Khi dữ liệu được quản lý như một sản phẩm
“Không ai hiểu dữ liệu của phòng ban tốt hơn chính họ.” Data Mesh là tư duy kiến trúc phi tập trung, nơi mỗi bộ phận trong doanh nghiệp trở thành “nhà cung cấp dữ liệu độc lập”, chịu trách nhiệm về chất lượng, bảo mật và giá trị của chính domain dữ liệu đó.
Created by: tieplv | Date: 16/10/2025 | 301
Xem thêm🧠 Semantic Layer – Chiếc “bộ não” thống nhất ngôn ngữ dữ liệu cho doanh nghiệp AI
“Dữ liệu không chỉ cần được lưu trữ – nó cần được hiểu giống nhau.” Semantic Layer là tầng phiên dịch ngữ nghĩa giúp toàn bộ doanh nghiệp — từ dashboard đến AI Agent — hiểu dữ liệu theo cùng một ngôn ngữ.
Created by: tieplv | Date: 16/10/2025 | 311
Xem thêm🧩 AI Model Monitoring – Giữ cho mô hình học máy luôn “tỉnh táo” trong thế giới thật
“Huấn luyện mô hình tốt là chưa đủ — duy trì nó thông minh mới là trò chơi dài.” Khi AI model đi vào production, nó bắt đầu “lão hóa”. Dữ liệu thay đổi, hành vi người dùng đổi, và model drift xảy ra. Giám sát mô hình (Model Monitoring) chính là cách để phát hiện, chẩn đoán và “điều trị” mô hình AI kịp thời.
Created by: tieplv | Date: 16/10/2025 | 302
Xem thêm🩺 Data Observability – Hệ thống “theo dõi sức khỏe dữ liệu” trong kỷ nguyên AI
“Nếu hệ thống IT có monitoring, thì dữ liệu cũng cần được theo dõi.” Data Observability giúp doanh nghiệp giám sát, chẩn đoán và khắc phục lỗi dữ liệu như một trung tâm y tế dành cho Data Pipeline — đảm bảo mọi insight, dashboard và mô hình AI đều khỏe mạnh.
Created by: tieplv | Date: 16/10/2025 | 303
Xem thêmThư viện ảnh
Chương trình đào tạo của MCI
Phân tích dữ liệu
Phân tích dữ liệu (Data Analytics), là sự lựa chọn cho những ai đam mê thu thập, khai thác và xử lý các bộ dữ liệu để đưa ra quan sát. Phân tích dữ liệu giúp tìm ra các xu hướng và số liệu trong các khối thông tin mà có thể bị bỏ sót nếu không sử dụng kĩ thuật hay công cụ phân tích. Giúp tối ưu hóa các quy trình làm tăng hiệu quả tổng thể của một doanh nghiệp, hệ thống.
Xem thêm
Khoa học dữ liệu
Khoa học dữ liệu (Data Science) là lĩnh vực nghiên cứu kết hợp chuyên môn lập trình và kiến thức toán học, thống kê để xử lý khối lượng dữ liệu. Áp dụng các thuật toán học máy cho các con số, văn bản, hình ảnh, video, âm thanh, sau đó xây dựng các hệ thống trí tuệ nhân tạo (AI) để phân tích dữ liệu từ nhiều nguồn khác nhau để đưa quyết định, lập kế hoạch chiến lược cho doanh nghiệp.
Xem thêm
Kỹ sư dữ liệu
Kỹ sư dữ liệu (Data Engineer), là một trong những vị trí quan trọng trong lĩnh vực khoa học dữ liệu, người nắm vị trí then chốt xây dựng, kiểm tra, duy trì các cấu trúc Data tổng hợp. Tất cả các số liệu sẽ được số hóa, giúp tiết kiệm thời gian và giảm thiểu chi phí cho doanh nghiệp. Họ là những người thiết kế và tối ưu các hệ thống dữ liệu lớn để mang lại những lợi thế cạnh trạnh vượt trội.
Xem thêm
Lập trình ứng dụng
Lập trình ứng dụng, top ngành được săn đón nhất hiện nay. Sử dụng các ngôn ngữ lập trình để tạo ra các ứng dụng có thể hoạt động được trên nền tảng, hoặc thiết bị như: ứng dụng web, ứng dụng di động,..Thế giới sẽ thiếu đi sự tương tác và dễ dàng nếu thiếu đi những kỹ sư phần mềm làm việc không biết mệt mỏi. Đây là ngành nghề trong mọi ngành nghề của thế kỉ 21 và hơn thế nữa.
Xem thêm