Lịch học dự kiến diễn ra



Lớp: PYTHON 51A6 LEVEL 1
Địa điểm: Số 5, Ngách 23, Ngõ 165 Thái Hà, HN
Thời gian học: Thứ 2 - 19H00 - 21H30 & Thứ 6 - 19H00 - 21H30
Lịch khai giảng: June 27, 2022
Thời gian kết thúc: Aug. 1, 2022
Giảng viên dự kiến: Đỗ Hưng
Lớp: PYTHON 55SB6 LEVEL 1
Địa điểm: 284A Nam Kỳ Khởi Nghĩa, Quận 3, TP.HCM
Thời gian học: Thứ 4 - 19H00 - 21H30 & Chủ nhật - 19H00 - 21H30
Lịch khai giảng: June 29, 2022
Thời gian kết thúc: Aug. 3, 2022
Giảng viên dự kiến: Đinh Công Minh
Lớp: PY 53A7 LEVEL 1
Địa điểm: Số 5, Ngách 23, Ngõ 165 Thái Hà, HN
Thời gian học: Thứ 4 - 19H00 - 21H30 & Thứ 7 - 19H00 - 21H30
Lịch khai giảng: July 27, 2022
Thời gian kết thúc: Aug. 27, 2022
Giảng viên dự kiến: --------
Python Level 1

Python For Data Analytics And Risk Analytics

Đây là 1 khóa học Python từ cơ bản đến nâng cao, ứng dụng trong phân tích dữ liệu lớn (Big Data Analyst) và quản trị rủi ro kinh doanh. Hình thức đào tạo online và offline trong thời lượng 10 buổi học, mỗi buổi học từ 2.5 - 3 tiếng. Học trực tiếp cùng các chuyên gia thông tin như sau:

Tên khóa học: Python For Data Analytics And Risk Analytics (Python Level 1)

Cơ hội nghề nghiệp nổi bật sau khi tốt nghiệp khóa học này là các vị trí:
• Data Analyst (Chuyên viên Phân tích Dữ liệu)
• Machine Learning (ML) Engineer (Kĩ sư Học máy)
• Artificial Intelligence (AI) Engineer (Kĩ sư Trí tuệ Nhân tạo)
• Data Scientist (Nhà Khoa học Dữ liệu)

5.0

Đối tượng

• Sinh viên khối kinh tế, kĩ thuật có định hướng tham gia ngành Data Science, Data Analytics đang bắt đầu tìm hiểu các kiến thức liên quan Python, Machine Learning, Deep Learning và học cách ứng dụng Python vào các dự án thực tế tại doanh nghiệp.

• Người đã đi làm mong muốn cải thiện kỹ năng làm việc với dữ liệu, kỹ năng giải quyết và ra quyết định với các bài toán thực tế trong công việc dựa trên phân tích dữ liệu chuyên sâu và hiệu quả với Python.

• Các bạn có mong muốn chuyển ngang sang ngành Data Analysis, Data Science & Machine Learning để có mức thu nhập cao hơn lên tới 1000$/tháng và phát triển sự nghiệp rộng mở hơn.

Yêu cầu đầu vào

Không yêu cầu đầu vào

Bạn sẽ học những gì

• Nắm về Python và Python IDE (mục đích, chức năng, operators, các libraries thông dụng)
• Vẽ biểu đồ và trực quan hóa dữ liệu
• Cách sử dụng thư viện Numpy Basics, Pandas
• Nắm về Built-in Data Structures, Functions, and Files
• Biết cách ghép nối dữ liệu, phân tích theo nhóm Data Aggregation and Group Operations
• Xử lý dữ liệu dạng Time Series
• Ngoài ra có thể loading dữ liệu lớn, lưu trữ, file formats, làm sạch và chuẩn hóa dữ liệu
• Thành thạo Python sau 10 buổi học
• Biết Cách sử dụng các library nâng cao khác.

Nội dung khóa học

    Chủ đề:

    - Preliminaries
    - Python Language Basics, Ipython, and Jupiter NoteBooks
    - Built-in Data Structures, Functions, and Files

    Mục tiêu:

    - Làm quen với Python
    - Nắm vững cấu trúc dữ liệu, hàm, và files

    Ứng dụng:

    Phân tích dữ liệu lớn (Big Data)

    Case Study:

    Tách và xử lý chuỗi (string)

    Chủ đề:

    - Built-in Data Structures, Functions, and Files

    Mục tiêu:

    - Làm quen với Python
    - Nắm vững cấu trúc dữ liệu, hàm, và files

    Ứng dụng:

    Phân tích dữ liệu lớn (Big Data)

    Case Study:

    - Viết hàm tự build
    - Áp dụng lọc và trích xuất dữ liệu bằng hàm

    Chủ đề:

    - Numpy Basics: Arrays and Vectorized Computation
    - Getting Started with Pandas

    Mục tiêu:

    - Sử dụng thư viện Numpy, cấu trúc mảng, vector
    - Xử lý dữ liệu lớn bằng Pandas

    Ứng dụng:

    Phân tích dữ liệu lớn (Big Data)

    Case Study:

    Random walks using Numpy

    Chủ đề:

    - Data Loading, Storage, and File Formats
    - Data Cleaning and Preparation

    Mục tiêu:

    - Đọc, lưu trữ và xử lý dữ liệu
    - Làm sạch dữ liệu

    Ứng dụng:

    Phân tích dữ liệu lớn (Big Data)

    Case Study:

    - Lấy dữ liệu chứng khoán và tỷ giá

    Chủ đề:

    - Data Wrangling: Join, Combine, and Reshape
    - Plotting and Visualization
    - Data Aggregation and Group Operations

    Mục tiêu:

    - Sắp xếp và cấu trúc lại dữ liệu
    - Vẽ biểu đồ và trực quan hóa
    - Tập hợp dữ liệu và thao tác trên nhóm

    Ứng dụng:

    Phân tích dữ liệu lớn (Big Data)

    Case Study:

    Phân tích dữ liệu viễn thông, tài chính, ngân hàng và bảo hiểm

    Chủ đề:

    Time Series Data

    Mục tiêu:

    - Nắm vững kiến thức về dữ liệu theo thời gian
    - Mở rộng kiến thức với pandas nâng cao

    Ứng dụng:

    Khoa học dữ liệu

    Case Study:

    Phân tích dữ liệu viễn thông, tài chính, ngân hàng và bảo hiểm

    Chủ đề:

    Advanced pandas

    Mục tiêu:

    - Nắm vững kiến thức về dữ liệu theo thời gian
    - Mở rộng kiến thức với pandas nâng cao

    Ứng dụng:

    Khoa học dữ liệu

    Case Study:

    Phân tích dữ liệu viễn thông, tài chính, ngân hàng và bảo hiểm

    Chủ đề:

    - Introduction to Modelling Libraries in Python
    - Data Analysis Examples

    Mục tiêu:

    Kiến thức thực hành từ chuyên gia khoa học dữ liệu

    Ứng dụng:

    Thực hành phân tích dữ liệu bằng các bài tập thực tế

    Case Study:

    Phân tích dữ liệu viễn thông, tài chính, ngân hàng và bảo hiểm

    Chủ đề:

    - Risk management
    - Portfolio management

    Mục tiêu:

    - Kiến thức về Máy học
    - Học có giám sát với thư viện Scikit-learn
    - Học không giám sát trong Python

    Ứng dụng:

    Phân tích và mô hình quản trị rủi ro, quản trị danh mục

    Case Study:

    Credit risk scoring and Segmentation in banking

    Chủ đề:

    Tổng kết chương trình xử lý, phân tích và biểu diễn dữ liệu với Python

    Mục tiêu:

    - Giới thiệu về quản trị danh mục trong ngân hàng
    - Sử dụng các công cụ vintage, roll-rate, flow-rate trong quản lý danh mục bán lẻ trong tài chính ngân hàng

    Ứng dụng:

    Phân tích và mô hình quản trị rủi ro, quản trị danh mục

    Case Study:

    Retail portfolio management in banking and finance

Tại sao khóa học tại MCI phù hợp với bạn

1. Lộ trình khóa học thiết kế khoa học, theo quy trình làm việc thực tế giúp bạn tiếp thu và nắm chắc kiến thức theo trình tự khoa học
2. Giáo trình đào tạo theo chuẩn Quốc tế kết hợp giữa lý thuyết và thực hành qua các case study thực tế
3. 100% Giảng viên tại MCI là các chuyên gia tư vấn tại Big4 các tập đoàn lớn tại Việt Nam, có chứng chỉ đào tạo nghiên cứu quốc tế trong lĩnh vực lập trình và dữ liệu
4. Giảng viên hướng dẫn tận tay giúp bạn thành thạo Python trong thời gian ngắn nhất
5. Cam kết chất lượng đào tạo, miễn phí học lại trọn đời nếu chưa nắm rõ kiến thức

Đội ngũ giảng viên


Trần Thị Hồng Hạnh

- Joint PhD - La Rochelle University and Jozef Stefan Institute
- Invited Researcher tại Josef Stefan Institute
- Data Scientist tại 3T JSC
- Data Scientist tại Samsung SDSV


Nguyễn Mạnh Trường

- Data Scientist – Spring Knowledge Global Joint Stock Company
Retail Investors Classification
- Master of Science in Financial Engineering – WorldQuant University
- Data Scientist tại TMA Innovation
- AI Data Scientist tại TEE-COIN Pte. Ltd
- Software Engineer – Robert Bosch Engineering Vietnam (RBVH)
CQP – Platform for managing the coding sources


Nguyễn Đình Tương

- Senior Data Analyst tại BIDV
- Big data analyst tại Viettel Cyberspace Center
- 6 năm kinh nghiệm tại vị trí Data Analyst tại các ngân hàng lớn


Nguyễn Tiến Đình

- Software Engineer (SERVER ARM) - AMPERE
COMPUTING
- Software Engineer - CBA( COMPONENT BASED ARCHITECTURE) - DEK
TECHNOLOGY
- Mentor anh supporter - IT CAR RACING (USING KERAS, TENSOFLOW, IMAGE
PROCESSING)


Đỗ Văn Hiếu

- Senior Data Analytics Specialist - Prudential Viet Nam
- Data Analyst Team Leader - VNG Corporation
- Business Analyst Team Leader - Zalo
- Kaggle Competitions/Projects:
+ House Prices - Advanced Regression Techniques
+ Computer vision - Digit numbers classification (MNIST Dataset)


Nguyễn Thành Đạt

- Remote Data Analyst - Arbory Afloat (Singapore)
- Remote Data Analytics Programmer - Singapore University of Technology and Design
- Bachelor of Engineering (Engineering Systems and Design) - Singapore University of Technology and Design